nTeirra

+

MISSILE SUSTEMS Technische Hochschule

Ingolstadt

Technische Hochschule Ingolstadt
Faculty of Computer Science
Bachelor's course Computer Science

Malware Beaconing Detection with Jupyter
Notebooks

Bachelor Thesis

Name and Surname

Issued on
Submitted on

First examiner
Second examiner
Supervisor

Jenny Hofbauer

October 13, 2022
January 16, 2023

Prof. Dr.-Ing. Hans-Joachim Hof
Prof. Dr. Michael Jarschel
Dominik Schaudel, M.Sc.

Abstract

In recent years the spread of ransomware and new malware variants has made
the cyber security threat landscape more dangerous. Malware beaconing
is a common tactic used by hackers to maintain a connection with a
compromised system, send new commands and exfiltrate data. This thesis
proposes a method for detecting malware beaconing in security-relevant log
information using Jupyter Notebook in a corporate network.

The approach involves analyzing network traffic data for patterns
that are indicative of beaconing activity. To do this, signature and
periodic-based detections are utilized, as well as visualizing and enriching
the detected connections to give an analyst all the information needed to
make a quick and informed decision. A working prototype is implemented in
Jupyter Notebook with requirements and restrictions based on the needs and
infrastructure of a real-life Security Operation Center. The most significant
limitation is the restricted network connectivity of the analyst's toolset.

The effectiveness of the approach is evaluated using real-world and
simulated data to demonstrate the potential for detecting malware beaconing
in a realistic scenario.

Overall, this work provides a practical and effective method for de-
tecting malware beaconing and gives a glimpse into the potential of
analyzing, hunting and detecting cyber threats with Jupyter Notebook.

Declaration

| hereby declare that this thesis is my own work, | have not presented it
elsewhere for examination purposes and | have not used any sources or aids
other than those stated. | have marked verbatim and indirect quotations as

such.

Ingolstadt, January 16, 2023

Jenny Hofbauer

Acknowledgements

This thesis concludes my dual study program at the Technische Hochschule
Ingolstadt and MBDA Deutschland GmbH.

Special thanks to my coworkers for 3.5 years of exciting projects, technical
and emotional support and the possibility to expand my IT security
knowledge. A particular mention to my supervisor Dominik Schaudel
for giving me the freedom and guidance to work on this interesting and
state-of-the-art topic.

| want to thank Prof. Dr.-Ing. Hans-Joachim Hof for accompanying
this thesis, answering all of my questions and giving me insights along the way.

Furthermore, | would like to thank Bernhard Bittner, Martin Endres, Martin

Kleehaus, Andreas Badenbach, Thomas Tschikste and Taner Kampa for
proofreading my thesis and allowing me to improve it further.

Contents

Acronyms
1. Introduction
1.1. Goalsand Scope
1.2. Introduction of MBDA Deutschland GmbH
2. Fundamentals
2.1. Jupyter Notebook
2.2, Malware e
22.1. Botnet
2.2.2. Malware Beaconing
2.3. Botnet Detection
2.3.1. Honeypot-based Detection L.
2.3.2. Signature-based Detection
2.3.3. Periodic-based Detection
2.4. Mathematical Basicso
241, Mean
242, Median
2.4.3. Mode
2.4.4. Median Absolute Deviation
2.45. Bowley Skewness Measure Lo
2.5. Real Intelligence Threat Analytics
2.5.1. The difference between User and Beacon Traffic
2.5.2. Bowley Skewness Score
2.5.3. Median Absolute Deviation Score
2.5.4. Connection Count Score

2.5.5. Data Smallness Score

2.5.6. Overall Beacon Score
2.6. Binary Search Tree

State of the Art
3.1, HELK

3.2. Real Intelligence Threat Analytics

3.3. Suricata

3.4. Differentiation from Existing Solutions,

Requirements Engineering

41 UseCase
4.2. Functional Requirements . .
4.3. Non-functional Requirements

=

O OO oW ~N~N~Noooo s P wWw

e e e e
_H O O OO Oo

12
12
13
13
14

15
15
15
16

5. Concept Design

5.1. Selection of the Software Base,
5.2. Design of a Component Architecture
5.2.1. Component Diagram L
5.3. Resource Gathering Notebook
5.4. Malware Beaconing Detection Notebook
5.4.1. Security Information and Event Data
5.4.2. Allowlist Analysis
5.4.3. Traffic Information
5.4.4. Time Series Analysis
5.4.5. Suspicious Indicator Analysis
5.4.6. Investigation and Verfication oL
5.5. Enrichment Notebook
5.5.1. Whois e
5.5.2. GreyNoise L
5.5.3. VirusTotal

6. Implementation

6.1. Data Structure for Malware Beaconing Detection
6.2. Importing HTTP Log Data
6.3. Domain Generation Algorithm Feed 0L
6.4. Detecting Backdoor Activation
6.5. Efficent Search

6.5.1. Pandas Search

6.5.2. Binary Search Tree
6.6. Storage of Application Programming Interface Keys
6.7. Displaying Enriched Malware Beaconing Activities
6.8. Malware Beaconing Detection Report L.

7. Detection Evaluation
7.1. Evaluation of the Implementation of Requirements
7.2. Performance
721, RITA .
7.2.2. Suricata,
7.23. Time

8. Conclusion and QOutlook
A. Appendix
Appendices

Literatur

17
17
17
18
19
19
19
20
20
20
23
24
24
24
24
25

26
26
26
27
27
28
28
29
30
30
31

32
32
33
33
33
35

36

List of Figures

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

3.1

5.1.
5.2.
53.
5.4.

6.1.

7.1.

Al
A2

Jupyter Notebook [6] 3
Botnet [9] 4
Taxonomy of Botnet Detection [13] 6
Snort Blackenergy Signature [17] 7
User and Beacon traffic [24] 9
Binary Search Tree 11
HELK [29] 12
Component Diagram 18
10 Minute Beacon Analysis [45] 21
60 Minute Beacon Analysis [45] 21
Activated Backdoor 22
Not Activated Backdoor 28
Suricata Evaluation 34
Enriched Malware Beaconing Activities i
Detection Report iii

Vi

List of Tables

3.1. Real Intelligence Threat Analytics Commands [23]

4.1. Functional Requirements
4.2. Non-functional Requirements

6.1. Pandas Search Performance
6.2. Binary Search Tree Performance

vii

List of Codes

6.1. Variable Mapping 27
6.2. Backdoor Activation 27
6.3. Pandas Search 28
6.4. Build Binary Search Tree Function [57] 29

6.5. Search Binary Search Tree Function [57]

viii

Acronyms

Al Acrtificial Intelligence

API1 Application Programming Interface
ASCIl American Standard Code for Information Interchange
C2 Command and Control

CERT Computer Emergency Response Team
CSV Comma-separated Values

DGA Domain Generation Algorithm

DNS Domain Name System

DoS Denial of Service

ELK Elastic Stack

GUI Graphical User Interface

HELK Hunting Elastic Stack

HTML Hypertext Markup Language
HTTPS Hypertext Transfer Protocol Secure
HTTP Hypertext Transfer Protocol

IP Internet Protocol

IT Information Technology

loC Indicator of Compromise

loT Internet of Things

NIDS Network Intrusion Detection System
NIPS Network Intrusion Prevention System
NTP Network Time Protocol

PCAP network packet capture

PDF Portable Document Format

Pl personally identifiable information

RITA Real Intelligence Threat Analytics

SIEM Security Information and Event Management

SMTP Simple Mail Transfer Protocol

SOAR Security Orchestration, Automation and Response
SOC Security Operation Center

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TOR The Tor Browser

TSV Tab Separated Values

1. Introduction

The 2022 status report of Information Technology (IT) security in Germany [1] compiled by the Federal
Office for Security in Information Technology classified the situation in the reporting period as tense to
critical, which is mainly attributed to the spread of ransomware and new malware variants. According
to the analysis, an increase of 116,6 million new malware variants was recognized in 2022. This is part
of an ongoing battle between cyber criminals and IT security professionals trying to protect businesses
and individuals. IT security experts continuously improve protective measures and the detection of
hacker attacks while criminals try to circumvent them. The analysis of malware, in particular, requires
a high degree of expert knowledge and a considerable investment of time. Since IT security is a
relatively young profession and more resources have only been put into the training of IT security
experts in recent years, many job openings are not filled [2]. Therefore, the industry increasingly relies
on automation to identify malware and analyze security incidents to combat the lack of professionals.

1.1. Goals and Scope

The goal of this thesis is the practical implementation of the analysis of security-relevant network
log information to detect malware beaconing with Jupyter Notebook in a realistic corporate network.
A proof of concept will be developed to efficiently analyze the data provided, recognize periodic
communication, detect beaconing indicators and give a clear and enriched presentation for further
manual analysis. This should demonstrate the potential of analyzing, hunting, and detecting cyber
threats with Jupyter Notebook for companies and create a starting point for other notebooks.

1.2. Introduction of MBDA Deutschland GmbH

This thesis is conducted in cooperation with MBDA Deutschland GmbH. MBDA S.A.S. is a European
defense company represented in Germany, France, ltaly, Spain and the United Kingdom. It specializes
in developing, testing and manufacturing air missile and air defense systems and components for Army,
Navy and Air Force subsystems. Other services include the maintenance and repair of existing systems
and those developed in cooperation with other manufacturers. [3]

MBDA Deutschland GmbH has its headquarters in Schrobenhausen where most of the development,
administration and explosives testing takes place. In addition, two smaller sites are situated in Germany.
Freinhausen is used to test collaborations with the German Airforce. The subsidiary Bayern-Chemie
GmbH in Aschau am Inn is a competence center for aerochemical propulsion systems. [4]

Since MBDA S.A.S is active in the defense industry, the company is particularly attractive for advanced
persistent threat groups. For this reason, MBDA S.A.S attaches particular importance to the highest
possible standard of IT security. In addition to preventive measures, great attention is paid to detecting
cyber attacks and analyzing security incidents. However, these tasks are time-consuming and require a

high level of expertise, often unavailable with a limited number of resources. Therefore, the support of
modular and easy-to-use automation is needed.

The practical part of this thesis was carried out according to the requirements of the MBDA Deutschland
GmbH Security Operation Center (SOC) and served as a proof of concept for the feasibility and
usefulness of automating security operation tasks with Jupyter Notebook.

2. Fundamentals

This section defines the knowledge required to understand this paper. It offers a brief overview of
malware and common detection methods and a mathematics and data structure knowledge refresher.

2.1. Jupyter Notebook

Jupyter Notebook is an open-source software for interactive scientific data analysis developed in 2014
by Fernando Pérez. The web application enables the simple and modular creation and sharing of
interactive live code, visualizations and documentation in numerous programming languages. In recent
years, Jupyter Notebook has become increasingly popular in academia as it allows scientists to analyze
different datasets in the same way and share studies easily and without significant prior knowledge.
This makes it easier to validate and reproduce results. [5]

Jupyter Notebook uses a two-process model based on the kernel-client infrastructure shown in figure
2.1.

HTTP &
Websockets ZeroMQ
Y Y
Browser Notebook Kernel
P Server P
User < <
N J N J
A
!
Notebook
File

Figure 2.1.: Jupyter Notebook [6]

Notebooks are files with the .ipynb file extension, which can contain code, metadata, content and
outputs. Notebooks can be written in any browser displaying the notebook server user interface. The
notebook server acts as a client which handles the communication between the browser, notebooks,
gtconsole and the kernel. It is also possible to send code directly to the kernel using the Qt
console a lightweight application which combines the advantages of a terminal and Graphical User
Interface (GUI).

The IPython kernel processes the code forwarded by the notebook server and sends back the result.
The kernel can simultaneously communicate with different clients over the low-level transport protocol
ZeroMQ and web sockets. ZeroMQ [7] is an asynchronous messaging library for high-throughput
computing specifically designed for simultaneous execution in distributed systems.

Furthermore, the Jupyter project provides the web-based development environment Jupyter Labs,
which can be personalized with extensions and tailored to the respective task. [6]

2.2. Malware

Malware is software created to fulfill an attacker's harmful intent. The word is used as an umbrella
term for a variety of more specialized harmful software. Malware is developed to penetrate devices
and networks by using vulnerabilities and social engineering techniques to carry out predefined tasks
depending on the type of malware. For example, Spyware collects data from a device; Ransomware,
on the other hand, encrypts user data and demands a ransom to restore it. [8]

2.2.1. Botnet

A bot is a type of malware that works remotely on smartphones, computers, Internet of Things (loT)
devices and many other systems. If a large number of systems are infected by one malicious actor and
misused for specific actions, it is called a botnet, as shown in figure 2.2. Once a device is infected
by botnet malware, it tries to establish communication with its botmaster over a Command and
Control (C2) server to receive commands. A botmaster is a person who operates and controls the
botnet. This regular communication serves as a keep-alive message and to manage further activities
of the systems controlled by the attacker. The infected devices can be misused for various purposes,
including reloading other malware, such as encryption trojans. Botnets are often utilized because of
their strong resources. For example, by sending spam mail, renting it out to third parties or Denial of
Service (DoS) attacks that overwhelm websites and services with a flood of requests. [9]

1 Bot
— =

: Bot
—=\

Botmaster

C2 Server

— Bot
—=\

Figure 2.2.: Botnet [9]

2.2.2. Malware Beaconing

After the early stages of the Cyber Kill Chain [10], consisting of reconnaissance, weaponization, delivery,
exploitation and installation, attackers try to establish remote control and persistence through C2
techniques. Malware beaconing is a C2 technique to establish continuous communication between
malware and a server controlled by the attacker. The attacker uses the server to share commands to
control the malware individually at any time after the initial infection and to exfiltrate data from the
host. Some of the most critical characteristics of malware beacons are described below. [11]

= Communication occurs through common protocols such as Hypertext Transfer Protocol (HTTP),
Hypertext Transfer Protocol Secure (HTTPS), Domain Name System (DNS) and Simple Mail
Transfer Protocol (SMTP) to look like ordinary traffic and to tunnel firewalls.

= Popular cloud services like Google Documents or Dropbox are used to evade restrictions.
= C2 communication can be encrypted with HTTPS, only leaving the traffic destination visible.
= Beacons communicate in regular intervals ranging from every few seconds to days.

= Most requests from the compromised system will include the same commands being transmitted,
resulting in a similar packet size.

= To evade detection, malware beacon payloads can be encoded or encrypted.

= A jitter is often used to add randomness to the beaconing communication. The jitter is set
to a time interval in which bounds the beacon generates a random time to request the next
instruction. [12]

2.3. Botnet Detection

The paper "A Taxonomy of Botnet Behavior, Detection, and Defense” [13] divides botnet detection
into three main approaches: recognizing individual bots, the botmaster and command and control
communication. This thesis focuses on the detection of communication, as shown in figure 2.3.

Active detection is involved in bot operations by manipulating them, which can be done through
injection or suppression. Injection detection injects packets into suspicious communication to infer C2
communication based on the response. Suppression detection works similarly, but instead of including
new packets, the sending and receiving of certain incoming and outgoing packets is suppressed.

On the other hand, passive detection observes communication without actively intervening. Syntactic
detection works with signatures and predefined patterns, such as strings or sequences, that have
emerged from the analysis of known malware communication. In semantic analysis, heuristics are
used to identify properties of defective communication. One of the sub-detections of semantics is
the correlation, which detects bots with similar communication behavior. In behavioral analysis,
deviations from regular machine traffic are detected. The last sub-item is the statistical approach,
which is largely implemented by machine learning, whereby recognition is trained from prominent
features of C2 communication, such as the range of packet length or flow duration.

C2 Detection

A 4 Y

Active Passive
I
v v
Injection Syntactic Semantic
1
Suppression
—> Correlation

Behavior-
Based

Statistical
Approches

Figure 2.3.: Taxonomy of Botnet Detection [13]

2.3.1. Honeypot-based Detection

One of the first attempts to detect botnets and C2 communication was developed by the Honeynet
Project [14]. So-called honeypots were placed on the internet and C2 communication was captured.
The monitored traffic was analyzed to block the botnet domains and Internet Protocol (IP) addresses
found and to create patterns to search for the detected botnets. A honeypot is a computer system
deliberately equipped with security gaps to divert attackers from the actual targets or to analyze hacker
attacks more precisely. The honeypot is designed to mimic an actual computer system but does not
contain legitimate data or provide access to the internal network. In addition to distracting from real
live networks, honeypots are equipped with extensive monitoring for information gathering. This allows
to gain an overview of the current threat situation or, in the case of specific built-in vulnerabilities,
insight into the attacker’s tactics, techniques and procedures. Honeypots are still actively used today
to collect malware samples, threat information data for detection engineering and threat intelligence.

2.3.2. Signature-based Detection

A traditional method of detecting malware C2 communication is through pattern-based signatures.
Signatures are Indicator of Compromise (loC) that indicate a known attack or abusive system behavior.
loCs can be specific objects or activities like IPs, domains, hashes, byte sequences, privileged logins
from foreign countries and more. With signature-based C2 detection, data traffic is observed and the
behavior and content is compared to the loCs. Signatures are frequently used in Network Intrusion
Detection System (NIDS), which monitor traffic and activities and raise alarms if an anomaly is detected.
Figure 2.4 shows a snort [15] signature to detect BLACKENERGY malware [16]. The signature enables
to check whether a connection from the internal network to the internet via Transmission Control

Protocol (TCP) has specific properties. The packet data has to be less than 400 bytes and data traffic
must be a HTTP POST request with the header "Cache-Control—3a— no-cache”. Furthermore, the
body must contain specific strings that indicate the type of malware. If all these properties are given,
an alarm is sent with the message "ET TROJAN Blackenergy Bot Checkin to C&C".

alert tcp SHOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg: "ET TROJAN Blackenergy Bot Checkin to C&C";

flow: established,to_server; dsize:<400;
content: "POST"; nocase; http_method,;
content: "Cache-Control|3a| no-cache"; http_header;
content: "id="; http_client_body;
content: "&build id="; http_client_body;

pcre: "id=x.+ [0-9A-F] {8}&build id=.+/P";
classtype:trojan-activity; sid:2007668;)

Figure 2.4.: Snort Blackenergy Signature [17]

Signatures have the disadvantage that only known and analyzed threats can be detected. Furthermore,
signatures work best on unencrypted data and must be updated regularly.

2.3.3. Periodic-based Detection

Periodic-based detection focuses on detecting malware beacons. Since these queries contact the
attacker via the C2 infrastructure at regular intervals, these signals can be recognized in the network
logs. The difficulty lies in discerning C2 communications among the multitude of non-malicious network
activities. There are different approaches, such as the recognition by Discrete Fourier Transforms [18],
which can recognize multiple distinct period lengths in a given time series. Alternatively, calculating
the signal-to-noise ratio [19] that compares the level of a harmonic signal to the background noise
and therefore recognizes the periodic malware beaconing as a signal. The advantage of this approach
is that even unknown malware can be detected this way. However, attackers have also evolved and
developed methods such as configuring a jitter to distort the regular queries. A jitter randomizes the
time delta a beacon sleeps in between contacting the C2 infrastructure [20]. For example, a beacon is
set to ask for new commands every 60 minutes. By adding a jitter of 50%, beaconing calls can now
vary by up to 30 minutes. Interactions would occur within a time delta interval of 30 to 90 minutes.
This variance in timing makes detecting beacons more difficult since they are less predictable.

2.4. Mathematical Basics

2.4.1. Mean

The statistical mean is a number within a dataset that represents the center point or a typical
value. To calculate the mean, all numbers within a data set are added and divided by the number of
observations.

2.4.2. Median

The median is the middle of a dataset, which separates the higher and lower half. To calculate the
median, the dataset is sorted from the smallest to the highest number. Then the number in the middle
is selected as the median; if the dataset has an even number of values, the median is defined as the
mean of the two middle values.

2.4.3. Mode

Mode is the most common number presented in a dataset. A set of numbers can have one, multiple or
no mode. It is calculated by placing all numbers in ascending or descending order and then counting
how many times each number appears.

2.4.4. Median Absolute Deviation

Median absolute deviation is a robust measure of how spread out a dataset is. The median absolute
deviation is best suited if the data is normally distributed and does not have extreme highs and lows.
It is calculated by sorting the dataset to find the median, which is then subtracted from every data
point. The resulting absolute value of each number is sorted again, whereas the newly calculated
median is the median absolute deviation. [21]

mad = median(x; — m)

x; = Each of the values in the dataset
m = Median of a dataset

2.4.5. Bowley Skewness Measure

The Bowley skewness calculates whether a distribution is negatively or positively skewed. Skewness
describes the degree of deviation from a symmetrical distribution. In the case of a symmetrical
distribution, the quartiles are equidistant. [22]

(Q— Q1 =Q3— Q)

Thus, the Bowley measures asymmetry by calculating if the quartiles are not equidistant from the
median.

Q22— Q) —(Q—)
@3 — Q1

bowley =

= 0 = Curve is symmetrical
= 0 > Curve is positively skewed

» 0 < Curve is negatively skewed

2.5. Real Intelligence Threat Analytics

Real Intelligence Threat Analytics (RITA) [23], as described in more detail in section 3.2, is an existing
framework written in Go for network traffic analysis which, among other things, can detect malware
beaconing through statistical analysis. The following section describes how the periodic-based malware
beacon analyzer works.

2.5.1. The difference between User and Beacon Traffic

Real Intelligence Threat Analytics (RITA)'s analysis process [24] is based on the distribution of user
and beacon traffic. To visualize the differences, a sufficient amount of beacon communication with
the following properties was generated.

= Time delta: 300 seconds
» Jitter: 20%
= Time delta interval: 240-360 seconds

To create a realistic environment, the beacon traffic is examined with regular user traffic generated by
visiting and refreshing a website.

Normal Traffic vs. Beacon Traffic

0.016 = beacon
normal

f

0014 I
0012

0.010

0.008

Density

0.006 MAD {begcon) Madian (Beacon)
i
0.004 MAD (normal) 1 _Mgdian \Nfrmal
¥/
1
v
[H |
0002 i 1
i 1
i 1
[1
)
1
0.000 i i
] 1
T T T L 1 T T T
=200 0 200 400 600 800

Time Delta

Figure 2.5.: User and Beacon traffic [24]

The figure 2.5 shows that beacon traffic has an even distribution and a small median absolute deviation.
In contrast, more random user traffic is skewed in one direction and has a larger distribution. Based
on this knowledge, RITA analyzes both the chronological sequence of requests and the transmitted
data to calculate a beacon score. Furthermore, indicators like packet size and the number of queries
are considered. [25]

2.5.2. Bowley Skewness Score

Perfect beacons have a symmetric time delta and data size distribution. The Bowley skewness measure
provides information about symmetry and how it deviates. The symmetry for all connections between
two systems can be calculated using the formula described in section 2.4.5. The closer the value is to
zero, the higher the symmetry and the higher the probability of a malware beacon.

2.5.3. Median Absolute Deviation Score

The median absolute deviation is also calculated for the time delta and data size. Beacons have
very low dispersion around the median, which can be calculated using the formula in section 2.4.4.
Therefore, the smaller the median absolute deviation, the higher the probability of a malware beacon.

2.5.4. Connection Count Score

A good indicator for beacons is a high connection count, which measures the communication between
two systems. First, the time between the first and last recorded connection is determined to calculate
the time delta. The number of all established connections is then divided by the previously determined
time delta of the first and last request. The greater the number of connections in a set timeframe, the
greater the probability it is a beacon.

2.5.5. Data Smallness Score

The data smallness score assumes that numerous small packets are sent if the C2 infrastructure does
not have new commands for the malware. A smaller data average additionally indicates malware
beaconing since user traffic usually involves data-intensive pictures and media. To calculate the data
smallness score, an average data packet is divided by 16383. RITA [26] uses the value 65535, whereas
RITA-J [27] divides by 8192 because perfect beacons only send very little data and are mostly idle. The
smaller the value, the more sensitive the score. The number used in this implementation is calculated
as the average size of beacon data packets in the test data set and serves as a guide value.

2.5.6. Overall Beacon Score
The final result is calculated from the sum of the datascore and timescore divided by two.

Timescore =
(BowleySkewnessScore + MedianAbsoluteDeviationScore + ConnectionsCountScore)/3

10

Datascore =
(BowleySkewnessScore + MedianAbsoluteDeviationScore + DataSmallnessScore)/3

Finalscore = (Timescore + Datascore)/?2

2.6. Binary Search Tree

A binary search tree is a node-based data structure that allows one to search, insert and delete items
within it quickly. The "binary” part of the name comes from the property that each node has a
maximum of 2 children. A binary search tree can be generated by locating all nodes with a value
smaller than the root note on the left subtree and all larger nodes on the right. An example of a
correctly constructed binary search tree is shown in figure 2.6.

ROOT

Figure 2.6.: Binary Search Tree

A search in the tree-like structure has a time complexity of O(/ogn) in the best and O(n) in the worst
case. If the searched number is smaller than the current node, the search continues on the left subtree
otherwise, the number is larger and located on the right subtree. A NULL is returned if the search has
reached the end of a search tree and has not found any node with the specified value. [28]

11

3. State of the Art

This section presents software with similar functionalities to gain an insight into the state of the art
and compare it with the solution presented in this paper. The statements are based exclusively on the
information provided by the manufacturer and have not been verified by testing the software.

3.1. HELK

Hunting Elastic Stack (HELK) [29] is an open-source threat hunting platform based on Jupyter
Notebook and Apache Spark over an Elastic Stack. Elastic Stack (ELK) [30] is a real-time tool to
store, search, analyze and visualize data. The HELK project was launched in 2017 and is currently in
the alpha phase. There have been no contributions for over a year and currently, no information about
further updates is available. It was primarily developed for research and to make threat hunting and
data analysis more accessible and faster. The most important features include cluster capability with
Spark, visualization with Kibana, data collection with real-time pipelining capabilities using Logstash
and distributed publish-subscribe messaging with Kafka. A complete overview of the architecture is
shown in figure 3.1.

SEaEK

spark | s GraphX
saL stre: (graph)

Apache Spark

g

WEF SERVER ' WIN.0GEEAT

-/

0)) SIGMA GraphFrames

Figure 3.1.: HELK [29]

The most significant functionality HELK provides is converting Sigma rules into notebooks [31]. Sigma
is a generic and open format to describe log events. Most malware detections are written in Sigma
since the language is platform-independent. A few hundred Sigma rules have already been implemented
as a notebook, including a few detections for common C2 tools.

12

3.2. Real Intelligence Threat Analytics

RITA [23] is an open-source framework for network traffic analysis capable of detecting malware
beaconing behavior, DNS tunneling and blocked domains and hosts. The framework scans both in a
Tab Separated Values (TSV) formatted database or in real-time using the open-source network security
monitoring tool Zeek [32]. Mainly written in Go, RITA is controlled over the terminal and does not
have a GUI. RITA can only be installed natively in Linux, but there is also a prebuilt Docker container.
The configuration and the evaluation of the results require appropriate specialist knowledge. Currently,
the range of functions includes the following commands.

KeyWord Description
show-databases Print the datasets currently stored.
show-beacons Print hosts which show signs of C2 software.
show-bl-hostnames Print blacklisted hostnames which received connections.
show-bl-source-ips Print blacklisted IPs which initiated connections.
show-bl-dest-ips Print blacklisted IPs which received connections.
show-exploded-dns Print DNS analysis. Exposes covert DNS channels.
show-long-connections Print long connections and relevant information.
show-strobes Print connections which occurred with excessive frequency.
show-useragents Print user agent information.

Table 3.1.: Real Intelligence Threat Analytics Commands [23]

The project is updated irregularly at the time of writing. However, the documentation indicates that
the commercial product AC-Hunter [33] from the same developers is an up-to-date, GUI-based and
feature-rich network threat hunting alternative. It is also worth mentioning that the GitHub user
Cyb3r-Monk [34] has published RITA-J [24], a Jupyter Notebook implementation of RITA. Currently,
the notebook only offers the ability to detect beacons through the RITA algorithm in Comma-separated
Values (CSV) files and no additional features.

3.3. Suricata

Suricata [35] is an open-source NIDS with Network Intrusion Prevention System (NIPS) capabilities
developed by the Open Information Security Foundation. NIDS is a device or application that detects
malicious traffic on a network. It usually needs promiscuous network access and does not interfere
with the monitored traffic. The NIDS alerts a management server or NIPS if a threat is detected.
NIPS then takes active steps to stop the malicious activity. Among functionalities like network packet
capture (PCAP) file analysis, automatic logging, protocol detection and parsing, IP reputation and file
extraction, Suricata can recognize dangerous network traffic through signatures. To detect malware
beacons, Suricata offers various rulesets with signatures to identify known beacon behavior. In addition,
some unofficial advancements use Suricata's logging functionality to detect periodic communication
behavior.

13

3.4. Differentiation from Existing Solutions

The system developed in this work differs from already established solutions in several aspects.

Through the implementation with Jupyter Notebook, the detection works without any dependency on
external applications and can be run offline with local data. This can prevent sensitive information
from becoming public and protect personally identifiable information (PII) recorded in the network
traffic logs. The notebooks offer a graphical, interactive user interface and plots to visualize beacon
activities. The user can also enrich potential C2 Infrastructure with more information, making the
application usable without a deep technical understanding of malware beacons. The application also
uses a mix of signature and periodic-based detec, resulting in a higher detection rate.

14

4. Requirements Engineering

In this thesis, the use of Jupyter Notebook to detect malware beaconing in a realistic corporate network
is to be tested. The specific requirements and restrictions are based on the needs and infrastructure of
the MBDA Deutschland GmbH SOC.

4.1. Use Case

The application is used for security audits and forensic analyses and should be able to operate on
HTTP network traffic logs from different environments. The log data is primarily provided by a
Security Information and Event Management (SIEM) system but should be as adaptable as possible
to support log data from additional sources. Malware beaconing detection should be both signature
and periodic-based. Since the analysis is usually carried out on-site on a standalone system, data
transmission and detection must occur offline. Therefore, the installation and time required for on-site
use of the application must be kept to a minimum. A clear overview of the suspicious systems should be
given immediately after the analysis. Furthermore, the functionality to enrich the detected connections
in an online system with further information is required. This enrichment should be visualized as clearly
and comprehensibly as possible and is not subject to any restrictions concerning online resources. The
number of connections to be analyzed online should be as small as possible to protect Application
Programming Interface (API) license limits and enable the SOC analyst to analyze only IPs and
domains authorized for the public eye. To make investigations comprehensible and revisable at a later
point in time, the suspicious connections and the enriched data has to be saved. The entire application
will be implemented using Jupyter Notebook to share the notebooks with other analysts and generate
reproducible results. Therefore, the application should be programmed as simply and understandably
as possible.

4.2. Functional Requirements

The functional requirements are developed from the given scenario and system context. Functional
requirements are specifications that describe the functions and capabilities of a system. They define
the system's fundamental behavior and must be fulfilled for the system to be considered successful.
[36, pages 51 - 52]

15

ID Description

FR1 | The application shall be built with Jupyter Notebook.

FR2 | The application shall be able to import and use security-relevant log information.
FR3 | The application shall analyze malware beaconing with periodic-based detection.
FR4 | The application shall analyze malware beaconing with signature-based detection.
FR5 | The application shall be able to look up reputations on IPs and domains.

FR6 | The application shall be able to enrich IPs and domains with information.

FR7 | The application should be able to archive investigation results.

Table 4.1.: Functional Requirements

4.3. Non-functional Requirements

Non-functional requirements describe the general characteristics of a system. If these are not met,
the application will continue to function but will not meet the expectations of the stakeholders or
the company. They are called quality attributes and describe requirements such as accessibility and

compatibility. [36, page 52]

ID Description
NFR1 | The application shall be easy to understand and customize.
NFR2 | The application shall be able to detect malware beaconing offline.
NFR3 | The offline application shall be easy and quick to install.
NFR4 | The offline application shall be able to use up-to-date signatures.
NFR5 | The online application shall provide an understandable and visual evaluation.
NFR6 | The online application shall only enrich connections on demand during investigation.

Table 4.2.: Non-functional Requirements

16

5. Concept Design

This chapter describes the specific technical implementation of the given system requirements.

5.1. Selection of the Software Base

The requirement FR1 already establishes that the system has to be implemented with Jupyter
Notebook. Jupyter Notebook used to be represented primarily in academics [5] but has become an
inherent part of many big companies like Microsoft and Google [6]. Especially the automation of IT
security tasks has become more prevalent in recent years, with open-source projects like HELK and
companies like IBM [37] adding support to their products. Besides the variety of free and ready-to-use
notebooks, Jupyter Notebook has many advantages for analyzing, hunting and detecting cyber threats.
The open-source software can be used as a free, efficient and programming language-independent way
to analyze security events in nearly every environment. Deployment is possible both locally and in
the cloud. Once installed, Jupyter Notebook can be used offline in every up-to-date web browser,
which makes it a great tool to bring on-site when investigating an incident. Since Jupyter Notebook is
language-agnostic, interactive and generates reproducible outputs, it is an excellent standardized way
to document and share knowledge.

To make the application easy to understand and customize (NFR1), a widely used programming
language, is chosen. According to Statista [38], 48.07% of global developers used the Python
programming language in 2022, making it the most used programming language after script and
structural languages such as JavaScript and HTML. Furthermore, the Jupyter Notebook installation
already comes with a native Python execution backend, which aids the simple and fast installation
required in NFR3. Another advantage is the extensive selection of additional libraries. Since security-
relevant log information is to be imported and evaluated (FR2), libraries for Big Data, such as NumPy
[39] and Pandas [40], are required. NumPYy is imported for easy numerical data processing. It simplifies
working with multidimensional arrays, which is required as a basis for programming with matrices and
vectors. In addition to data structures, functions for numerical calculations are provided. Pandas is
used to analyze large amounts of data efficiently. The open-source tool offers features for easy analysis
and manipulation of Big Data. It is primarily designed for operation and access to numeric tables and
series of numbers.

5.2. Design of a Component Architecture

In order to meet all requirements, the entire application is divided into three notebooks on an online
and offline device. The signatures required for the detection are collected in the Resource Gathering
Notebook, described in more detail under section 5.3. The notebook runs on a device connected to
the internet and downloads loCs and signatures, which are converted into a standardized format and

17

stored collectively in a folder. As required in NFR4, the up-to-date signatures can then be transferred
to the standalone system using removable media.

When transferring data, it is important that the removable media is checked by a security gateway for
removable media before it is connected to another system. A security gateway for removable media
is a device to which removable media is connected to check the data carrier with various anti-virus
software. This prevents malware software from spreading through infected files and mobile media.

In addition to the signatures, the HTTP log data to be analyzed is also transferred to the standalone
system. Therefore, the primary Malware Beaconing Detection Notebook can be operated offline
(NFR2) with the shared data to detect malware beacon activities, further explained in 5.4. Furthermore,
by outsourcing all other functions, the notebook is operated without external resources and with few
libraries, thus complies with NFR3. After the signature and periodic-based detection, all suspicious
connections are exported to a file.

The suspicious connections can now be transferred to an online system with the help of a removable
medium. The last Enrichment Notebook, described in 5.5, is responsible for interactively enriching
the suspicious connections with information from the internet and displaying all collected knowledge.

5.2.1. Component Diagram

To better represent the components in the system and their tasks, a component diagram is created
that shows the static implementation view of a system.

Online System {]
Netlab 360 {]
Majestic {]
Torproject {])— Resource Gathering Notebook
Custom Indicators g:]
Feodotracker {]
WHoOIS 2] Offline System 2]
VirusTotal {])— Enrichment Notebook }—C){ --------------------------------------- Malware Beacon Notebook
A S Q-
GreyNoise
Analyst

Figure 5.1.: Component Diagram

18

5.3. Resource Gathering Notebook

When executed, the Resource Gathering Notebook creates a folder containing loCs and signatures for
offline usage. The notebook first allows the user to enter custom domain and IP indicators in an input
field. This enables the user to customize the application to their needs by incorporating loCs from e. g.
Computer Emergency Response Team (CERT) reports or threat intelligence sources. In addition to the
individual indicators, the latest feed of The Tor Browser (TOR) exit nodes from the onion project [41],
known C2 servers and known malware Domain Generation Algorithm (DGA) domains are collected.
Lastly, a list of popular websites is downloaded for the allowlist. After the download, all unrelated
data is deleted and the remaining indicators are converted into a uniform format.

5.4. Malware Beaconing Detection Notebook

The concept of this notebook is based on BAYWATCH [42], a robust beaconing detection methodology
divided into four phases. Before the first phase begins, requirement FR2 is fulfilled by importing and
standardizing security-relevant log information in preparation for further processing. The first phase,
called allowlist analysis, filters out trusted traffic from the preprocessed data to reduce processing
time. In the next step, the time series analysis, the filtered data is divided into communication
pairs and checked for consistent behavior. To further enrich the periodic-based analysis (FR3), the
third step is the signature-based (FR4) suspicious indicator analysis which searches for additional
beacon indicators. Finally, the indicators are evaluated in the investigation and verification phase
and suspicious connections are displayed. The human analyst is presented with an overview of all
suspicious connections and why they were detected as a beacon. To further enrich the detections, all
suspicious connections are exported into a file and the analyst can use the additional online Enrichment
Notebook to gain more information.

5.4.1. Security Information and Event Data

The detection is based on security information and event data, generated from events that affect
confidentiality, integrity or availability. The data is collected from various sources, the most common
being sensors, the network, applications, databases, servers and user devices which generate data such
as log files, configurations, messages, alarms, metrics, changes, or tickets.

The Malware Beaconing Detection Notebook is primarily designed to work with exported HTTP
data from a SIEM system within a defined timeframe. SIEM systems are a tool to analyze security
information and event logs to monitor network and user activities. Specifically, proxy, DNS and firewall
logs can be exported from the system in various formats and integrated into Jupyter Notebook for a
detailed analysis of beaconing communication. The notebooks support the filetype CSV, which most
SIEM systems like Splunk, Big Blue, LogRhythm or Azure Sentinel use.

One of the main problems in structuring the available SIEM data is the labeling which is different for
most sources and networks. The data required for the analysis must be named consistently. To make
this task more accessible, the user has to manually define variables with the respective designation
once at the beginning of the notebook. The rest of the notebook uses the mapped variables instead of
the individual labels of the source. [43]

19

5.4.2. Allowlist Analysis

To minimize the data to be analyzed and enhance the overall performance, harmless and trusted
network traffic is filtered before further processing. This includes benign websites like search engines
or environment-specific intranet sites or services. The allowlist is divided into a universal and local list
to make the customization optional and easy to update. The universal list can be used with every
dataset, whereas the local allowlist consists of custom data provided by the user.

Universal Allowlist

The universal allowlist is comprised of popular public websites such as search engines, news, shopping,
mail or social media. The allowlist can be easily compiled by importing a list of popular websites
from resources like majestic’'s top one million [44]. It should be noted that in some cases, malicious
usage can occur from those web services. However, such web providers have security measures and
detections in place and publicly announce malicious use. The allowlist is a file that does not affect
the rest of the notebook. This allows for easy updates and the removal if an extended beacon search
through all data is desired.

Local Allowlist

The second allowlist is meant to be provided by the user and is different for every environment. Internal
services like a Network Time Protocol (NTP) server are common false positives. NTP ensures the
time is accurate on every local system by beaconing in intervals to synchronize the system clock.
Other services potentially generating false positives are configuration management systems, patch
management systems or licensing systems. A list of the most popular internal traffic destinations can
be compiled with the help of a SIEM system or other network tools.

5.4.3. Traffic Information

Some malware beacon identifiers are easier to calculate across the entire HT TP traffic directly after the
allowlist filtering. This includes a high amount of HTTP POST requests. Malware beacons regularly
check the C2 infrastructure and ask for new commands. Therefore, the devices are sorted and displayed
according to the number of HTTP POST requests. The same applies to a high number of messages
with an HTTP 404 error code, meaning that a page or file was not found. For example, if a DGA
described in section 5.4.5 is used to generate the next C2 domain, it may already be owned or not set
up yet and the request returns an HTTP 404 response.

5.4.4. Time Series Analysis

For malware to be used efficiently, it is programmed to receive new commands regularly. This has
the advantage that one universal malware can load additional software as required after infection and
for example, change the target of a DoS attack on command. Therefore, a beacon is often built
into malware. However, the beacon needs a way to communicate with its botmaster, which can be
detected through the time series analysis. The beacons require the internet to establish a connection,
which offers a central monitoring point for analysis. The captured data can be searched for persistent

20

beacons by filtering for long-standing connections; if these are not known, a more detailed analysis
can be initiated. Furthermore, persistent connections do not scale well; if the C2 infrastructure has
to maintain several thousand connections, a lot of hardware resources are required. Additionally,
more connections mean more opportunities for security appliances like NIDS to detect the malicious
activities. Therefore, beacons are used to reach out to the attacker in intervals. Since commands must
be executed promptly, communication has to be frequent. This limitation can be discovered in the

network traffic through appropriate analysis. [25]

Time Bucket Length

An essential factor to consider is the so-called time bucket in which the analysis is conducted. Anomalies
or extreme values regulate themselves when looking at a more extended time period, which is why
analyzes should ideally be made over more than 24 hours. The evaluation of the time deltas of a
10-minute beacon analysis can be viewed in figure 5.2, the red line shows the mean average of all
connections. The mean average never matches the connections and many extremes can be seen.

A

Time Delta

Requests

Figure 5.2.: 10 Minute Beacon Analysis [45]

A 60-minute analysis of the same beacon shows a different picture when values within a smaller period
have been grouped and only the mean is displayed in the graph. For example, in figure 5.3, the
extremes have balanced out and the mean average is close to the correct time delta for almost all

connections.

A

Time Delta

Requests

Figure 5.3.: 60 Minute Beacon Analysis [45]

21

RITA

The periodic-based detection is implemented by the open-source framework RITA. The precise technical
implementation is described in 3.2. RITA uses the time deltas between requests and the transmitted
data to detect periodic connections between systems. The analysis is also designed to find malware
beacons with jitters and uses several detection methods. The framework is written in Go and has to be
reimplemented in Python since it was selected as the programming language for this prototype. After
the execution of RITA, a beacon score is given; the closer the score is to 1, the higher the probability
it is a beacon. If the value is 1, it is a so-called perfect beacon sending the same query at regular
intervals without a jitter.

Detecting Backdoor Activation

A backdoor is the part of the malware that allows the attacker to gain access or control a system after
infecting a device. In the case of malware with a beacon function, the backdoor is said to be activated
when the C2 infrastructure sends the first command to the beacon. If the backdoor still needs to be
activated, the beacon traffic looks uniform. The malware asks the C2 infrastructure for new commands
at regular intervals, which then responds with a sleep command. The answer is always the same and,
therefore, always has the same size when the data is transmitted. However, the backdoor has probably
been activated if there are other data transfers of different sizes, as shown in figure 5.4. This activation
can be obfuscated by padding every data package.

400 -

300 ~

Data Size

200

100 o

0 5 10 15 20 25 30
Requests

Figure 5.4.: Activated Backdoor

22

5.4.5. Suspicious Indicator Analysis

After a hacker attack, the methods of compromise are analyzed and the loC shared. loC are objects or
activities used in security operations that indicate a compromise. loCs can be unusual DNS requests,
multiple login attempts, hashes, IPs or file and web server names. If malware beaconing is used in an
attack, the server used by the hacker may be shared as an loC so that it can be blocked or detected in
other networks. [46]

Known Malicious Indicators

To make known C2 server IPs accessible offline, a comprehensive list and a real-time tracker are
necessary. Feodo tracker by abuse.ch [47] is a free and regularly updated tracker for various well-known
malware families. Feodo offers its collection of currently active botnets and all C2 servers ever tracked
as a CSV file or Suricata botnet C2 IP ruleset. Initially, the notebook will be preconfigured with a
comprehensive list of all botnets. However, this method will have a much higher chance of false
positives since IPs are often re-used. To avoid this problem, the files from the Resources Gathering
Notebook offers a quick and easy way to use only the most recent Feodo tracker feed.

Domain Generation Algorithm Detection

A DGA is a function that generates new domains on demand. Since botnet malware needs a server to
get commands from to work correctly, using only one fixed domain or IP is often too risky for the
attacker. The domain or IP can be blocked or taken down when detected, bringing an entire botnet
to a halt. That is why modern malware families use the DGAs to switch to a new domain regularly.
This constant change is also called domain fluxing. The algorithm generates the same predictable
domains for the infected device and the attacker, but the result can not be analyzable by malware
analysts without the seed. Furthermore, domains are generated where the probability is low that they
are already taken and registration should be as cheap and anonymous as possible. The simplest way
to meet these requirements is through an algorithm that generates a modifiable domain name from
seed and uses a cheap persistent top-level domain. Since countless DGA algorithms can deliver diverse
results through seeds, most detection approaches are based on signatures or machine learning. Machine
learning would go beyond this paper’s scope and is incompatible with the established requirements.
That is why the notebook uses a signature-based approach. Netlab 360 [48] maintains a free and
regularly updated list of known DGA families, which can be used to compare network traffic with
known DGA-generated domains. [49]

TOR Nodes

TOR [41] is an overlay network for anonymizing connection data. To use it, the user installs a so-called
onion proxy on his computer, which connects to the TOR network. TOR provides a list of TOR servers
from which a random route is selected at regular intervals. The random connection chain is at least
three servers long, with none of the systems knowing its predecessor or successor. It is, therefore, very
time-consuming to track TOR communication. To protect their identity, some malware actors use the
TOR network to obfuscate communications between the infected system and the C2 infrastructure.
An easy way to find out if communication has occurred over a TOR network is to check the list of of
known TOR servers. [50]

23

Custom Indicators

In the Resource Gathering Notebook, the user can add custom IP and domain indicators. The custom
loCs are compared with the HTTP log data and matches are marked as suspicious.

5.4.6. Investigation and Verfication

In the last part of the notebook, the analyst can sort the calculated results based on his priorities and
examine individual connections more closely. For example, it is possible to choose between all time
series analysis scores above a specific value, known malicious indicators, TOR nodes and the DGA
detection. Furthermore, there is the option to select a particular connection with the row index which
is then clearly displayed in a table and plots.

5.5. Enrichment Notebook

The last notebook is designed to give the analyst a quick and straightforward way to analyze previously
detected suspicious communication. The findings are enriched with additional information (FR6),
such as WHOIS or X.509 certificate data and reputation services like VirusTotal or GreyNoise (FR5),
described in more detail in the sections below. Since companies use different services and APIs change,
making the queries and the graphical representation as simple and modular as possible is crucial. To
evaluate the connections required by the analyst (NFR6) only, a widget is created that takes the index
of the connection to be analyzed and carries out the investigation on command. This saves time since
the notebook does not automatically enrich all suspicious connections. Furthermore, the gathered
information is simultaneously archived in a text file when an investigation is run (FR7).

5.5.1. Whois

WHOIS provides information about internet domains, IP addresses and their owners. An analyst must
know when and where the domain was registered. Especially the geolocation of the server is a beneficial
threat intelligence information. For example, connections to countries with no company locations or
suppliers can be classified as suspicious. Another critical piece of data is the status of the domain and
when it was registered. Newly registered domains should be analyzed more closely. C2 infrastructure
is often blocked as soon as its use is known, so the domains change frequently. Furthermore, if a DGA
is used, domains are regularly regenerated and have only been in use for a short time. [51] [52]

5.5.2. GreyNoise

GreyNoise analyzes internet scanning traffic to filter legitimate threats from background noise. The
platform collects, analyzes and labels data on IPs that scan the Internet. This helps an analyst to
classify the IP intent quickly and gives a detailed context. [53]

24

5.5.3. VirusTotal

VirusTotal is a free online service owned by Chronicle LLC that allows scanning files and websites with
over 70 antivirus programs. Uploaded files or websites and the corresponding analyzes are publicly
available. Security researchers can use reported files and websites and additional information, such as
the first upload date or reports sorted by country, to assess malware spread. Furthermore, VirusTotal
automatically correlates the same loCs with other uploads, thus giving a good overview of malware
variations. The service is also offered as an enterprise version for companies, whereby the reported data
is not automatically uploaded. In addition to a web interface, the platform also offers an API. The
API can be passed an IP or domain as a parameter and it provides all relevant information about it.
The following information is applicable for evaluating systems as to whether they are C2 infrastructure.
[54]

= Classification of all virus scans in the categories harmless, malicious and suspicious
» Categorization of major antivirus software providers
= Link to the VirusTotal result to view all information if necessary

= X.509 certificate information

25

6. Implementation

This section describes the peculiarities of the practical implementation of the previously developed
design concept. The complete code for the prototype can found on the enclosed data medium. All
notebooks and the data used can be downloaded from GitHub [55].

6.1. Data Structure for Malware Beaconing Detection

An uniform folder structure is created to optimally use the data collected from various sources in the
offline Malware Beacon Detection Notebook on the standalone device. All resources are placed in the
same folder containing the notebook itself. The dataset subfolder contains all security information and
event datasets to be analyzed. The offline_resources folder created by the online Resource Gathering
Notebook is adopted unchanged and replaces older versions. The local_allowlist, which contains
company-specific data, is stored on the same level as the notebook and is only modified when domains
or IPs need to be added or deleted.

| --- malware_beacon_detection.ipynb

I

| --- offline_resources

| | -—— custom_domain_indicators.csv
| -—- custom_ip_indicators.csv
|--- dga_indicators.csv

| --- feodotracker_indicators.csv
|--- top_websites.csv

|--- tor_indicators.csv

—--- local_allowlist.csv

|
|
|
|
|
|
|
|
| --- Dataset

I | --- http-dataset.log
| |--- http-dataset.csv

6.2. Importing HTTP Log Data

Since most log sources have different names and not all logged data is required, the security-relevant
log information must be mapped before analysis. As discussed in the conceptual design, variables are
used to standardize the naming. The variables must be initialized at the beginning of the notebook for
the corresponding data source. In the rest of the notebook, only the unified variables are used for
reference. An example mapping for the evaluation data set can be seen in code 6.1.

26

Metadata

timestamp = 'ts’

http-method = '"method’

size = 'request_body_len’

URL

url = "uri’

domain = 'host’

mime_type = 'resp_mime_types'’
Source

src_ip = 'id.orig_h"'

Destination

dst_ip = 'id.resp_h'
dst_host = '"host’
dst_port = 'id.resp_p’

Code 6.1: Variable Mapping

After mapping the log source name and the variables in the notebook, the log data is imported and
converted to a Pandas data structure fit for further processing. To speed up processing, only the
required columns timestamp, src_ip, dst_ip, dst_port, domain, url, http_method, mime_type and
size are saved. In the following step, timestamps are formatted in seconds to make times coherent.

6.3. Domain Generation Algorithm Feed

The DGA detection was based on a regularly updated feed from Netlab360 [48]. However, while this
thesis was being drafted, the free service was discontinued and access to the APl must be purchased
through an annual subscription. The search for another free real-time DGA threat intelligence provider
was unsuccessful in the scope of this thesis. To complete the prototype, the last downloaded list of
the DGA-generated domains from Netlab360 was used.

6.4. Detecting Backdoor Activation

Whether the malware beacon has received commands and the backdoor has thus been activated is
calculated for every communication pair. For the calculation the list of the length of the transmitted
packets is searched with the unique function for unique values. If there are data packages with different
sizes, it is assumed that the backdoor has been activated.

dataset["backdoor_activated”] = dataset[' request_body_len'].apply(lambda x: True
if len(np.unique(x)) > 1 else False)

Code 6.2: Backdoor Activation
To make analysis easier for the analyst, the data packet lengths are also displayed as a visualization

with the library matplotlib [56]. In figure 6.1, a connection is shown where the backdoor has not yet
been activated.

27

40 -

30 A

Data Size

20

0 5 10 15 20 25 30
Requests

Figure 6.1.: Not Activated Backdoor

6.5. Efficent Search

Since large amounts of data are processed, speed is essential in building this prototype. The most
time-consuming aspect of detecting malware beacons is comparing them to signatures. Therefore, the
most efficient search possible was sought for the DGA analysis which compares the largest amounts of
data.

6.5.1. Pandas Search

The Big Data library Pandas supports the function apply, which applies operations on the entire column
of a dataset. For example, this feature can be used to loop through the list of all domains and search
for matches as shown in the code 6.3.

dataset["dga”] = dataset[domain]. apply(lambda x: True if any(i in x for i in
dga_list) else False)

Code 6.3: Pandas Search

This search was tested using a 10,000-entry HT TP traffic log file with the amount of DGA domains
specified in the table.

28

Task 1000 | 10000 | 100000
Search 1,8 7.1 31,3

Table 6.1.: Pandas Search Performance

6.5.2. Binary Search Tree

As described in section 2.6, a binary search tree sorts its values by size. The same can also be done
with strings. The American Standard Code for Information Interchange (ASCIl) number of each char
in the string is added and compared. A tree node is constructed so that it has a reference to its left
and right child and its stored data. Thus, the whole tree can be easily accessed from the root node.

To insert a new value into the tree, it is traversed from the root till an empty child node is found. The
new value is then anchored as a child node.

This implementation can be skewed to one side, requiring more recursions. The binary search tree
must be balanced to avoid reaching the recursion limit. A binary tree is considered balanced when
the height difference of every sub-tree does not exceed 1. The DGA domains must first be sorted by
ASCII value in an array. To build the tree as balanced as possible, the root node must be the median
of all ASCII values. The tree is constructed by setting the middle of the array as the root. In the next
step, the median of the left half is made the left node of the root and the median of the right side the
next right node. Now, these steps are recursively repeated till the whole array is processed.

def BST(arr):

if arr != None:
return None

make median element the root
median = (len(arr)) // 2

root = Node(arr[median])

left subtree
root.left = BST(arr [: median])

right subtree
root.right = BST(arr[median+1:])

return root

Code 6.4: Build Binary Search Tree Function [57]

After construction, the connections are searched in the binary search tree by specifying the root and
data to be searched. If the domain is not in the tree, the output is None; otherwise, it is the storage
position of the node with the searched value.[57] [28]

29

def search(root,data):

if root is None or root.data — data:
return root

if root.val < data:
return search(root.right ,h data)

return search(root.left ,data)

Code 6.5: Search Binary Search Tree Function [57]

To measure the efficiency, several binary trees were set up with DGA data and the build/search times
were evaluated in a table. The same data sets were used for the Pandas search measurement.

Task 1000 | 10000 | 100000
Build 0,8 8 53
Search 0,2 3,5 18,8

Table 6.2.: Binary Search Tree Performance

After building the balanced binary search tree, the search was slightly faster than Pandas. However,
the Jupyter kernel kept crashing on the relatively weak standalone system when building a search tree
for large amounts of data. The recursion limit on the standalone devices is preconfigured with 3000,
which is insufficient even with a balanced binary tree. Since a database integration for more efficient
storage is planned in the future and the Pandas search is only slightly slower but easier to understand,
it is used in the prototype.

6.6. Storage of Application Programming Interface Keys

Services like VirusTotal and GreyNoise require keys to authenticate to the APIl. However, if the API key
is defined directly in the header, it is in the plain text of the notebook. This can lead to the accidental
sharing of keys with a third party. The API keys are stored in an operating system’s environment
variable to avoid this. After initiating the environment variables once, the API keys are stored in the
process until the operating system is restarted. The API key initialization can be deleted after the first
run to avoid accidental sharing and inadvertent access. Alternatively, the keys can be permanently
stored in the .profile file. When making an API request, the key is loaded from the environment and
is not displayed in plain text throughout the process.

6.7. Displaying Enriched Malware Beaconing Activities

The requirements state that the suspicious connections should be enriched with online information
only if required (NFR6) and that the resulting data has to be displayed clearly (NFR5). This can be
achieved with Jupyter Widgets [58], interactive browser controls for Jupyter Notebook implemented by
the ipywidgets library.

30

At the start of the notebook, all suspicious communication is displayed with an index added automatically
by Pandas. This index can be entered into an input field to specify the connection to be processed. A
button then calls the functions for enriching the data. Each API request to services like VirusTotal
is implemented in a separate function to keep the notebook as modular as possible. The results of
the API queries are then summarized in a table the respective function returns. The tables can be
rendered directly into an ipywidgets output field. Thus, every time the button is activated, all API calls
are made and displayed with the connection defined in the input. Figure A.1 shows the connection’s
output with the index zero.

6.8. Malware Beaconing Detection Report

In a SOC, information about security events and incidents must be archived. Jupyter Notebook offers
several options, such as exporting notebooks to Hypertext Markup Language (HTML) or Portable
Document Format (PDF) files. However, the dynamic ipwidgets can not be displayed correctly in this
file types. Therefore, the automatic generation of reports was implemented to avoid this problem and
minimize manual work. All suspicious results are automatically saved to a CSV file at the end of the
offline Malware Beaconing Detection Notebook. The CSV file serves as a basis for further enrichments
and as a report of the detection results. The file is named after the current day and time and contains
all connections with a high periodic-based detection score and suspicious signatures. By using the
CSV format, the file can be easily converted into a Pandas data structure to enable further analysis.

When a suspicious connection is further analyzed in the Enrichment Notebook, an HTML report with
all the displayed information is automatically created. This is particularly efficient as the HTML table
constructed for visualization can easily be saved in an HTML file. Furthermore, this implementation
has the advantage that the appearance and content of the report can be easily personalized. The
HTML reports are named with the source and destination to make them easily to search. A segment
of a sample report can be viewed in figure A.2.

31

7. Detection Evaluation

In this chapter, the prototype created as part of this thesis is compared to the specified requirements
and the performance is measured using a realistic data set described in section 7.2. The evaluation
shows that the implemented system meets all minimum requirements and can be rated as a success.

7.1. Evaluation of the Implementation of Requirements

FR1 - The application shall be built with Jupyter Notebook: The requirement was fully
implemented by developing the entire prototype with Jupyter Notebook.

FR2 - The application shall be able to import and use security-relevant log information: The
requirement has been sufficiently implemented, the system can work with the most common file format
CSv.

FR3 - The application shall analyze malware beaconing with periodic-based detection: The
requirement was fully met. Connections are analyzed for periodic behavior using bowley skewness and
median absolute deviation.

FR4 - The application shall analyze malware beaconing with signature-based detection: The
requirement has been fulfilled. The signature sources form a good basis and implement various
indicators. The Resource Gathering Notebook provides a base for easily integrating other APl-enabled
sources.

FR5 - The application shall be able to look up reputations on IPs and domains: The requirement
was implemented by querying the VirusTotal and GreyNoise services. Further queries can be conveniently
added to the Enrichment Notebook.

FRG6 - The application shall be able to enrich IPs and domains with information: The requirement
was implemented. Additional information, such as WHOIS and x.509 certificates, are displayed and
further queries can be easily added.

FR7 - The application should be able to save investigation results permanently: The requirement

was implemented for all suspicious connections and additional information by automated exports to
CSV and HTML files.

NFR1 - The application shall be easy to understand and customize: The requirement was
implemented as best as practicable. The notebooks are written in Python, one of the most widespread
programming languages in the security operations field and usees popular libraries for working with big
data. Furthermore, the notebooks are constructed as modularly as possible to allow individual adjust-
ments. Special attention was paid to customizability during the resource gathering and enrichment
development.

32

NFR2 - The application shall be able to detect malware beaconing offline: The requirement
has been fully implemented. Even if there is no way to transfer signatures to the offline system,
periodic-based detection offers a good coverage.

NFR3 - The offline application shall be easy and quick to install: The requirement has been
implemented as far as practicable. The notebook uses four libraries that have to be installed. However,
these are essential for the demanded functionalities and an appropriate detection speed.

NFR4 - The offline application shall be able to use up-to-date signatures: The requirement
has been fully implemented. Running the Resource Gathering Notebook will automatically download
the latest signatures and put them into a format efficient for the Malware Beaconing Detection
Notebook.

NFR5 - The online application shall provide an understandable and visual evaluation: The
requirement was implemented as good as possible through the use of Jupyter Widgets and tables. The
design options with Jupyter Widgets are limited, which is why large amounts of data may become
confusing. An interactive search would improve this problem but could not be realized in the time
frame of this thesis.

NFR6 - The online application shall only enrich the connections the analyst needs: The
requirement was fully met using interactive Jupyter Widgets. Suspicious connections are only enhanced
with online information if specifically requested.

7.2. Performance

Zeek log datasets [27] from malware-traffic-analysis.net [59] recorded between 2013 and 2020 were used
to evaluate the detection. Furthermore, periodic and user traffic was generated in a test environment
to bring the data set to an appropriate size. The data set consists of 108968 individual connections,
including user traffic, server communication and malware beaconing interactions. The log data was
collected over a sufficiently large period and the time series analysis score was set for every finding
above 0.8. Testing determined this was the best configuration for the provided datasets. A smaller
score includes beacons with a larger jitter but also involves the analysis of more false positives.

7.2.1. RITA

For comparison, the test data set was analyzed with RITAs periodic-based detection and yielded 283
results. The same data set was used in the developed prototype and 296 suspicious IPs were found.
The prototype analysis also included all of the IPs detected by RITA. The additional results are three
systems detected by the suspicious indicator analysis and the finetuning of the data smallness score.
Thus, the Jupyter Notebook implementation of RITA has at least the same coverage as the original.

7.2.2. Suricata

To test whether the detected IPs are malware beacons, the 296 suspicious |IPs are compared against
Suricata alerts.

33

Severity

result['alert.metadata.signature_severity'].value_counts()

Major 181
Informational 18
Critical 6
Minor 3

Mame: alert.metadata.signature_severity, dtype: inte4

Category
result['alert.metadata.former_category'].value_counts()
MALWARE 141
POLICY 38
TROJAN 37
INFO 28
JA3 12
PHISHING B
HUNTING
CURRENT_EVENTS 3
ADWARE_PUP 2
WEE_SERVER 1
EXPLOIT_KIT 1

Mame: alert.metadata.former_category, dtype: inte4

Signature

result['alert.signature'].value_counts()

ET MALWARE Fareit/Pony Downlocader Checkin 2 78
ET MALWARE Cobalt Strike Beacon Obserwved 26
ET HUNTING GEMERIC SUSPICIOUS POST to Dotted Quad with Fake Browser 1 16
ET POLICY HTTP Request to a *.tk domain 13
ET MALWARE Quant Loader Download Request 1a

ET MALWARE Locky CnC Checkin HTTP Pattern

ET JA43 Hash - Possible Malware - USP5 Malspam

ET MALWARE Win32.5py/TVRat Checkin

ET POLICY Cleartext WordPress Login

ET INFQ Java Request to DynDNS Pro Dynamic DNS Domain
Mame: alert.signature, Length: 92, dtype: inte4

= =

Figure 7.1.: Suricata Evaluation

As shown in figure 7.1, 202 of the detected IPs were also detected as suspicious by Suricata. A true
positive ratio of 68% was thus achieved. Additionally, most false positives are updates or network
services that communicate periodically and can be circumvented by listing in the local allowlist in
follow-up investigations.

34

7.2.3. Time

All notebooks were run multiple times with the following data to measure the time required for a
complete malware beaconing detection. The time a SOC analyst needs to transfer the data between
the online and offline systems has not been considered.

Security Information and Event Data: 108968 individual connections
DGA domains: 1045434

Feodotracker: 810

Tor Nodes: 1148

Custom IPs/Domains: 13

Local and universal allowlist: 100003

On average, the Resource Gathering Notebook took 116 seconds, the Malware Beacon Analysis
Notebook 65 seconds and the Enrichment Notebook 24 seconds. This adds up to a total of 3 minutes
and 42 seconds. Approximately three more seconds must be added for every further investigation of a
connection in the Enrichment Notebook.

35

8. Conclusion and Outlook

The threat landscape is constantly changing and defenders must rely increasingly on automation
and collaboration to meet the security gaps of advancing digitalization. This is also reflected in
the increasing popularity of Security Orchestration, Automation and Response (SOAR) systems for
automating security operations tasks [60]. The use of Jupyter Notebook as a SOAR solutions has
significant advantages. Primarily due to their interactive and collaborative nature, which allows for
easy experimentation and testing of different approaches. This suggests that Jupyter Notebook will
continue to gain popularity in the SOAR security field.

The prototype developed in this thesis has already been successfully used in its current form to analyze
security-relevant data in a company network. All special requirements were met, such as supporting
offline detection on standalone devices and data protection. The primary function of detecting malware
beaconing was implemented efficiently and with several different methods. Furthermore, suspicious
findings are enriched with information and visualized to give an analyst all the data for an informed
decision. During the development, attention was paid to create understandable and reusable code to
allow using notebook components for other use cases.

Despite the advanced stage of development of the prototype, further improvements are planned. A
significant aspect is the support of other data formats, such as PCAP files, to make the notebooks
usable for more application areas. In addition, data management and searches can be improved using
services such as Elasticsearch. Especially when analyzing large amounts of data, a search engine saves
a lot of time. The malware beaconing detection can be further improved by classifying the type of
malware. Another notebook that directly identifies the malware family the beacon originates from
through security-relevant log data from suspicious systems would significantly speed up the analysis of
the previously found results.

36

A. Appendix

Indexs | 0
Connection
Time
Source
Destination

Destination Port

Host

URI

HTTP Method

MIME Type

Average Request Body Length
Interval Range

Score

Time Score

Data Score

DGA Indicator

Malicious IP Indicator

Tor Indicator

Custom IP Indicater
Custom Domain Indicator

Backdoor activated

IF Whaois
ASM Registry
ASM |dentifier
Metwork routing block

Country Code

w Run investigation

[Timestamp('2018-08-06 13:37:00.66%072018", Ti...

10.8.6,101
178.208.83.45

20

adohbeupdater.medirru

[/gate.php, /gate.php, /gate.php, /gate.php, /g..

POST

]]]]]

ripencc

210079

178.208.83.0/24

RU

]]] o cee

32.360656

26399.0

Falze

Falze

Falze

Falze

True

Figure A.1.: Enriched Malware Beaconing Activities

Connection

Time [Timestamp('2018-08-06 13:57:00.669078016"), Ti...
Source 10.8.6.101

Destination 178.208.83.45

Destination Port 80

Host adobeupdater.mcdir.ru

URI [/gate.php, /gate.php, /gate.php, /gate.php, /g...
HTTP Method POST

MIME Type [, =0 = e
Average Request Body Length 32.360656

Interval Range 86399.0

Score 0.999685

Time Score 1.0

Data Score 0.999369

DGA Indicator False

Malicious IP Indicator False

Tor Indicator False

Custom IP Indicator False

Custom Domain Indicator False

Backdoor activated True

IP Whois

ASN Registry ripencc

ASN Identifier 210079

Network routing block 178.208.83.0/24

Country Code RU

ASN allocation date 2010-03-10

ASN description EUROBYTE Eurobyte LLC, RU

Network description McHost.Ru in Webzilla, Amsterdam, NL, EU

GreyNoise
Noise False
Riot False

Message IP not observed scanning the internet or contained in RIOT data set.

Figure A.2.: Detection Report

Bibliography

[1]

2]

8]
[4]

[5]

[6]
[7]
8]

[9]

[10]

[11]

Bundesamt fiir Sicherheit in der Informationstechnik.

Die Lage der IT-Sicherheit in Deutschland 2022: BSI-LB22/511. PDF.

53175 Bonn, Oktober 2022.

URL: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
Lageberichte/Lagebericht2022.pdf?__blob=publicationFile&v=6.

Statista. Global companies with IT security staff shortage 2022 — Statista. 21/12/2022.
URL: https://www.statista.com/statistics/1319650/global-companies-with-it-
security-staff-shortage/.

MBDA. MBDA Worldwide — MBDA. 7/02/2022.
URL: https://www.mbda-systems.com/about-us/mbda-worldwide/.

Mbda de. Das Unternehmen. 2017.
URL: https://www.mbda-deutschland.de/das-unternehmen/.

Bernadette M. Randles et al.

“Using the Jupyter Notebook as a Tool for Open Science: An Empirical Study".
In: 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL 2017).
Piscataway, NJ: IEEE, 2017, pp. 1-2. 1SBN: 978-1-5386-3861-3.

DOI: 10.1109/JCDL.2017.7991618.

Project Jupyter. 4/08/2022. URL: https://jupyter.org/.
ZeroMQ. 6/01/2023. URL: https://zeromq.org/.

Ekta Gandotra, Divya Bansal, and Sanjeev Sofat.

“Malware Analysis and Classification: A Survey”.

In: Journal of Information Security 05.02 (2014), pp. 56—-64. 1SSN: 2153-1234.
DOI: 10.4236/jis.2014.52006

URL: https://www.scirp.org/html/4-7800194_44440.htm.

Bundesamt fiir Sicherheit in der Informationstechnik.

Botnetze — Auswirkungen und SchutzmaBnahmen. 28/09/2021.

URL: https://www.bsi.bund.de/DE/Themen/Verbraucherinnen-und-
Verbraucher/Cyber-Sicherheitslage/Methoden-der-Cyber-
Kriminalitaet/Botnetze/botnetze _node.html.

Bahrami Pooneh Nikkhah et al. “Cyber Kill Chain-Based Taxonomy of Advanced Persistent
Threat Actors: Analogy of Tactics, Techniques, and Procedures”.

In: Journal of Information Processing Systems 15.4 (2019), pp. 865-889. 1ssN: 1976-913X.
DOI: 10.3745/JIPS.03.0126.

“Signs of beaconing activity”. In: Splunk (18.5.2021).
URL: https://lantern.splunk.com/Security/Use_Cases/Threat_Hunting/
Monitoring_a_network_for_ DNS_exfiltration/Signs_of_beaconing activity.

[12]

[13]
[14]
[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. Al-Marghilani. “Comprehensive Analysis of loT Malware Evasion Techniques”.
In: Engineering, Technology & Applied Science Research 11.4 (2021), pp. 7495-7500.
ISSN: 2241-4487. DOI: 10.48084/etasr.4296.

A Taxonomy of Botnet Behavior, Detection, and Defense. 20/11/2022.
URL: https://ieeexplore-ieee-org.thi.idm.oclc.org/document/6616686.

The Honeynet Project — Honeypot research. 10/01/2023.
URL: https://www.honeynet.org/.

Snort - Network Intrusion Detection & Prevention System. 12/01/2023.
URL: https://www.snort.org/.

Marcus Geiger et al. “An Analysis of Black Energy 3, Crashoverride, and Trisis, Three Malware
Approaches Targeting Operational Technology Systems”. In: 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, uuuu-uuuu,
pp. 1537-1543. 1SBN: 978-1-7281-8956-7. DOI: 10.1109/ETFA46521.2020.9212128.

ResearchGate. Figure 3: Example of good Snort signature used to detect a beacon frame.
19/11/2022.

URL: https://www.researchgate.net/figure/Example-of-good-Snort-signature-
used-to-detect-a-beacon-frame-sent-by-a-Blackenergy-bot_figd_ 270463001.

US20170187736A1 - Malware Beaconing Detection Methods - Google Patents. 24/12/2022.
URL: https://patents.google.com/patent/US20170187736A1/en.

Shalaginov, Andrii and Franke, Katrin and Huang, Xiongwei, ed. Malware Beaconing Detection
by Mining Large-scale DNS Logs for Targeted Attack Identification. 2016.

Hui Xia. "Research on Bot-Net Prevention and Control Technology Based on P2P".

In: 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC). [Place of publication not identified]: IEEE, 2018,
pp. 1986-1990. 1sBN: 978-1-5386-1803-5. DOI1: 10.1109/IMCEC.2018.8469569.

Christophe Leys et al. “Detecting outliers: Do not use standard deviation around the mean, use
absolute deviation around the median”.

In: Journal of Experimental Social Psychology 49.4 (2013), pp. 764-766. 1SSN: 0022-1031.
DOI: 10.1016/j.jesp.2013.03.013.

Richard A. Groeneveld and Glen Meeden. “Measuring Skewness and Kurtosis".
In: The Statistician 33.4 (1984), p. 391. 1SSN: 00390526. DOI: 10.2307/2987742.

GitHub. GitHub - activecm/rita: Real Intelligence Threat Analytics (RITA) is a framework for
detecting command and control communication through network traffic analysis. 24/08/2022.
URL: https://github.com/activecm/rita.

GitHub. Cyb3r-Monk/RITA-J: Implementation of RITA (Real Intelligence Threat Analytics) in
Jupyter Notebook with improved scoring algorithm. 20/12/2022.
URL: https://github.com/Cyb3r-Monk/RITA-J.

Basil AsSadhan, Jose M. F. Moura, and David Lapsley.

“Periodic Behavior in Botnet Command and Control Channels Traffic”.

In: IEEE GLOBECOM 2009. Piscataway, NJ: IEEE, 2009, pp. 1-6. 1SBN: 978-1-4244-4148-8.
DOI: 10.1109/GLOCOM.2009.5426172.

GitHub. rita/analyzer.go at master - activecm/rita. 13/01/2023.
URL: https://github.com/activecm/rita/blob/master/pkg/beacon/analyzer.go.

[27]

[28]
[29]
[30]
[31]

[32]
[33]

[34]
[35]
[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]
[45]

GitHub. Cyb3r-Monk/RITA-J: Implementation of RITA (Real Intelligence Threat Analytics) in
Jupyter Notebook with improved scoring algorithm. 26/12/2022.
URL: https://github.com/Cyb3r-Monk/RITA-J/tree/main/sample-data.

Fast algorithms for sorting and searching strings. 1997. URL: http://webhotel4.ruc.dk/
~keld/teaching/algoritmedesign_f08/artikler/04/bentley99.pdf.

GitHub. GitHub - Cyb3rWardOg/HELK: The Hunting ELK. 24/08/2022.
URL: https://github.com/Cyb3rWardOg/HELK.

Elastic. Elastic Stack: Elasticsearch, Kibana, Beats und Logstash. 11/01/2023.
URL: https://www.elastic.co/de/elastic-stack/.

GitHub. GitHub - Cyb3rWardOg/HELK: The Hunting ELK. 27/08/2022. URL: https:
//github.com/Cyb3rWardOg/HELK/tree/master/docker/helk-jupyter/notebooks.

Zeek. The Zeek Network Security Monitor. 11/01/2023. URL: https://zeek.org/.

Active Countermeasures. Home - Active Countermeasures. 20/07/2022.
URL: https://www.activecountermeasures.com/.

Cyb3r-Monk (Mehmet E.) 20/12/2022. URL: https://github.com/Cyb3r-Monk.
Suricata. Home - Suricata. 10/08/2022. URL: https://suricata.io/.

Ralph Rowland Young. The requirements engineering handbook.

Artech House technology management and professional development library.

Norwood, MA: Artech House, 2004. 1sBN: 1580536182. URL: http://search.ebscohost.
com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=104655.

IBM Documentation. 2022. URL: https://www.ibm.com/docs/en/cloud-paks/cp-
security/1.107topic=postinstallation-using-jupyter-notebook-hunt-security-
threats.

Statista. Most used languages among software developers globally 2022 — Statista.
16/12/2022. URL: https://www.statista.com/statistics/793628/worldwide-
developer-survey-most-used-languages/.

NumPy. 20/12/2022. URL: https://numpy.org/.
pandas - Python Data Analysis Library. 24/12/2022. URL: https://pandas.pydata.org/.

The Tor Project — Privacy & Freedom Online. 12/01/2023.
URL: https://www.torproject.org/.

Xin Hu et al. “BAYWATCH: Robust Beaconing Detection to Identify Infected Hosts in
Large-Scale Enterprise Networks". In: 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2016. DOI: 10.1109/dsn.2016.50.

Sandeep Bhatt, Pratyusa K. Manadhata, and Loai Zomlot.

“The Operational Role of Security Information and Event Management Systems”.
In: IEEE Security & Privacy 12.5 (2014), pp. 35—41. 1ssN: 1540-7993.
DOI: 10.1109/msp.2014.103.

Majestic Million. 25/12/2022. URL: https://majestic.com/reports/majestic-million.

Active Countermeasures. Hunt Training - Active Countermeasures. 25/12/2022.
URL: https://www.activecountermeasures.com/hunt-training/#slides.

Vi

[46]

[47]
[48]

[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]

[60]

Foram Suthar, Nimisha Patel, and Samarat V.O. Khanna.

“A Signature-Based Botnet (Emotet) Detection Mechanism”.

In: International Journal of Engineering Trends and Technology 70.5 (2022), pp. 185-193.
ISSN: 2231-5381. poOI: 10.14445/22315381/IJETT-V70I5P220.

URL: https://www.researchgate.net/profile/bohaz-
jakim/publication/365172750_a_signature-
based_botnet_emotet_detection_mechanism.

Feodo Tracker — Blocklist. 25/12/2022.
URL: https://feodotracker.abuse.ch/blocklist/.

Netlab OpenData Project. Netlab OpenData Project. 24/12/2022.
URL: https://data.netlab.360.com/.

Aditya K. Sood and Sherali Zeadally. “A Taxonomy of Domain-Generation Algorithms".
In: IEEE Security & Privacy 14.4 (2016), pp. 46-53. 1SSN: 1540-7993.
DOI: 10.1109/msp.2016.76.

Ibrahim Ghafir et al.
“BotDet: A System for Real Time Botnet Command and Control Traffic Detection”.
In: IEEE Access 6(2018),pp.38947—38958.DOI:10.1109/ACCESS.2018.284674O

Legacy Whois Lookups — ipwhois 1.2.0 documentation. 29/01/2021.
URL: https://ipwhois.readthedocs.io/en/latest/WHOIS.html#basic-usage.

WhoisXML API: #1 for Domain, WHOIS, IP, DNS & Threat Intelligence. 24/12/2022.
URL: https://www.whoisxmlapi.com/.

GreyNoise is the source for understanding internet noise. 24/12/2022.
URL: https://www.greynoise.io/.

VirusTotal - Home. 24/12/2022. URL: https://www.virustotal.com/gui/home/upload.

GitHub. General - OxFFD700/Malware-Beaconing-Detection-with-Jupyter-Notebooks.
13/01/2023. URL: https://github.com/0xFFD700/Malware-Beaconing-Detection-
with-Jupyter-Notebooks.

Matplotlib — Visualization with Python. 31/12/2022. URL: https://matplotlib.org/.

gurlaipsita/python-binary-search-trees - Jovian. 25/12/2022.
URL: https://jovian.ai/gurlaipsita/python-binary-search-trees.

Jupyter Widgets — Jupyter Widgets 8.0.2 documentation. 2/09/2022.
URL: https://ipywidgets.readthedocs.io/en/stable/.

malware-traffic analysis.net. malware-traffic-analysis.net. 21,/02/2022.
URL: https://malware-traffic-analysis.net/.

ReportLinker. “The global SOAR market size is expected to grow from an estimated value of
USD 1.1 billion in 2022 to USD 2.3 billion by 2027, at a Compound Annual Growth Rate
(CAGR) of 15.8% from 2022 to 2027". In: ReportLinker ().

URL: https://www.globenewswire.com/news-release/2022/07/19/2481839/0/en/The-
global-SOAR-market-size-is-expected-to-grow-from-an-estimated-value-of-
USD-1-1-billion-in-2022-to0-USD-2-3-billion-by-2027-at-a-Compound-Annual-
Growth-Rate-CAGR-0f-15-8-from-202.html.

vii

